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Spectrum of  /-Fluids: A Statistical Derivation 
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The spectrum of massless bosonic and fermionic fluids satisfying the equation 
of state p = (3, - I)p is derived using elementary statistical methods. As a 
limiting case, the Lorentz-invariant spectrum of the vacuum (3' = 0, p = -p)  
is deduced. These results are in agreement with our earlier derivation for bosons 
using thermodynamics and semiclassical considerations. 

1. I N T R O D U C T I O N  

The class o f  3'-fluids comprises  the simplest kind o f  relativistic perfect 
simple fluids used in the f ramework of  general relativity and cosmology.  
Such a class is usually defined in terms o f  the so-called "3,-law" equation 
o f  state 

P = (3' - l)p (1) 

where 3' E [0, 2]. Some special types o f  media described by the above 
relation are (i) the vacuum (p  = - p ,  3, = 0), (ii) a randomly oriented 
distribution o f  infinitely thin, straight strings averaged over  all directions 
(p = - ~ p ,  3' = 2/3), (iii) blackbody radiation (p  = _yp,i 3' = 4/3), and (iv) 
stiff matter (p  = p, 3' = 2). In a series o f  recent papers (Lima and Santos, 
1995; Lima and Maia, 1995a,b), some general properties o f  this monoparame-  
tric family o f  fluids have been discussed based on thermodynamic  and 
semiclassical considerations.  In particular, we have stressed the unusual ther- 
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modynamic behavior arising when the 3' parameter is smaller than one. In 
this case, unlike the subset with positive pressure, the temperature increases 
in the course of an adiabatic expansion. In the vacuum case, for instance, it 
was shown that the temperature scales as T -- V, where V is the volume. 
Further, by assuming that such fuids may be regarded as a kind of generalized 
radiation, the general Planck form of the spectrum has been obtained, which 
includes the vacuum spectrum as a particular case (Lima and Maia, 1995b). 
In our opinion, the special attention given to this class of fluids has a very 
simple physical motivation. Physicists have no intuitive picture of the relativ- 
istic quantum vacuum, which remains one of the most unknown physical 
systems. A possible way to overcome such a difficulty is using a 3'-fluid. In 
principle, by establishing the physical properties for a generic value of 3', 
one can obtain the Lorentz-invariant vacuum properties taking the limit 3' = 0. 
Such a possibility may be important even in the cosmological domain, where 
the vacuum physics is closely related to the cosmological constant problem 
(Weinberg, 1989). In this connection, it should be recalled that in some stages, 
the scalar fields driving inflation can also be thought of as a kind of "/-fluid, 
regardless of the details of its potential. This happens, for instance, during 
the coherent field oscillation phase of the inflaton field at the end of inflation 
(Kolb and Turner, 1990). 

In this context, it seems interesting to extend the classical thermodynamic 
approach developed in the above papers, making the necessary connection 
with the microphysics underlying such systems. In the present article, our 
main goal is to show how the Planckian-type distribution for a 3'-fluid, which 
has been discussed in the framework of the old quantum theory of radiation, 
can be reproduced in the domain of statistical mechanics. This allows us to 
extend the theory for fermions as well. Of course, the third and last step 
would be to derive the spectrum from a more basic theory such as quantum 
field theory. 

2. THE SPECTRUM OF v-FLUIDS 

Now consider the canonical procedure to compute the pressure p and 
the energy density p in elementary statistical mechanics. As usual, these 
quantities are defined by 

kT(O In Qt 
P = \ a v  (2) 

and 

kTZ (O ln Q) 
°=T\ aT }v 

(3) 
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where In Q is the grand-canonical thermodynamic potential, which corres- 
ponds to a quantum fluid in contact with a thermal reservoir at temperature 
T. Since we are assuming that the vacuum state behaves like a kind of 
radiation which differs from blackbody radiation only due to the equation of  
state, we take the chemical potential of any "y-fluid to be identically zero. In 
this case, by considering a continuous spectrum, we have the well-known 
formula (Itzykson and Zuber, I980) 

l n Q =  - v  In 1 -T- exp - f(to) dto 
t 

(4) 

where the upper and lower signs inside the brackets correspond to bosons 
and fermions, respectively. 

Our aim now is to find the unknown function f(to), which is the number 
of states per unit energy. 

From equations (1)-(4) we get easily 

- k T  In 1 -7- exp - f(to) dto = ( 2 t -  l)h do  
exp(hto/kT)  -~ 1 

(5) 

- k T l n  1 -7-exp - + h exp (h to / kT )  ¥ 1 

where F(to) is a primitive off( to):  

F'(to) = f(to) (7) 

Eet us now suppose, for a moment, that the first term in (6), which 
corresponds to a boundary term, vanishes. In what follows, it will become 
clear under which conditions the function f(to) will fulfill such a constraint. 
Bearing this in mind, we may write from (5) and (6) 

f0 ~ F(m) dm = (3~ - 1) mf(m) dm (8) 
exp (h to l kT )  -7- 1 exp (h to / kT )  7- 1 

The correctness of the above equation will be guaranteed if the functions 
f(to) and F(to) obeying (7) satisfy the following relation: 

F(to) = (y - 1)tof(to) (9) 

Of course, the above equation points to a singularity at ~, = 1. This rather 
pathological case ("dust"), describing a zero-pressure fluid, will not be consid- 
ered here. A partial integration on the left-hand side of (5) furnishes 
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In principle, we cannot guarantee that equation (9) will furnish all physically 
meaningful solutions of equations (7) and (8). Our confidence that it is the 
physical solution is supported by our equivalent earlier result using only 
thermodynamic and semictassical considerations (Lima and Maia, 1995b). 
In addition, it is easy to see that equation (9) is independent of the statistics 
of the 3,-fluid particles. 

From equations (7) and (9) one obtains the differential equation forf(to), 

f ' ( t o ) _  2 -  3' 1 (10) 

where the prime denotes derivation with respect to to. The solution of  above 
equation is straightforward, 

f(co) = Ato ~2-'¢~/e~-IJ (11) 

where A is a -,/-dependent integration constant. Now, inserting the above 
equation into (4) and using (3), we obtain 

Ii ~ Ato I/~'t- I~ 
p(T) = exp(hto/kT) 7- 1 dto (12) 

Therefore, the spectrum of a ~-fluid reads 

Ato~/(-y- ~) 
p(to, T) = (13) 

exp(hto/kT) -~ 1 

For the case of bosons, equations (12) and (13) above are, respectively, 
(39) and (53) presented by Lima and Maia (1995b). As expected, by introduc- 
ing a new variable x = hto/kT, one obtains from (12) the generalized Stefan-  
Boltzmann law (Lima and Santos, 1995) 

p(T) = tiT ~/~'~- l) (14) 

where the constant "q depends on the ",/parameter as well as on the bosonic 
(or fermionic) spin degrees of freedom of each field. Note also that the above 
expression for p(T) does not mean that the energy density is always finite 
for any value of 3,. In particular, for the vacuum case (~ = 0), p effectively 
does not depend on the temperature, but the constant x I is infinite, as it should 
be from quantum field theory. 

3. T HE V A C U U M - I N F R A R E D  D I V E R G E N C E  

Naturally, the validity of equations (12)-(14) is crucially dependent on 
our earlier hypotheses concerning the boundary term in equation (6). In order 
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to clarify this point we will compute explicitly such a term. From (9) and 
(11) it follows that 

F(to) = A(',/ - 1)to l/~'t-l~ (15) 

Now, inserting the function F(to) into (6), we see that for ",/ranging over the 
interval 1 < 31 -< 2, the boundary term vanishes in accordance with our 
earlier conjecture. In particular, this means that the above derivation works 
well in the case of photons ( - / =  4/3). However, we find a divergence in the 
limit to ---) 0 when 0 --< ~, < 1. In the vacuum case, for instance, equation 
(13) reduces to 

A h t o  - t  
Pvac(to, T) = (16) 

e x p ( h t o / k T )  -7- 1 

Thus, even though the vacuum energy density does not depend on the 
temperature [see (15)], it also exhibits the same kind of divergence. Thus 
the spectrum for negative pressures (0 -< ~/ < 1) demands closer attention 
due to the inevitable existence of an infrared divergence. 

To avoid the infrared catastrophe we proceed in analogy with the Casimir 
effect, in which the divergent energy density has been regularized by an 
ultraviolet exponential cutoff e -'~'° with ot > 0 (Plunien et  al.,  1986; Ruggiero 
and Zimmerman, 1977). In this way, we use an infrared exponential cutoff 
e -°J~°, a > 0. By introducing the regularized function 

Fo,(to) = F( to )e  - ' / ° '  (17) 

it is straightforward to check that F,~(to) makes the boundary term in (6) vanish. 
Now, returning to equation (7), we may define its regularized counterpart 

f,~(to) = F'(to) (18) 

and from (15), (17), and (18) we readily obtain the regularized density of 
states function 

which, as should be expected, reduces to f(to) in the limit a --~ 0. From (5) 
and (6) the regularized equation of state reads 

P~ = (~ - l)p~ (20) 

where 

If : F~(to) do) (21 ) 
Pc' = e x p ( h t o / k T )  ~ 1 
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and 

fo x tof,~(to) doJ (22) 
P~ = e x p ( h o J / k T )  ~ 1 

It should be noticed that the above regularized integrals are finite for 
all cases 0 --< 3' -< 2, 3' 4: 1. However, if c~ ---) 0, we obtain the original 
infrared divergence for 0 --< 3' < 1. In particular, this means that the method 
outlined in Section 2 is valid either with no regularization or renormalization 
only for positive pressures. As a matter of  fact, although the regularized 
quantities P,~ and p,~ are finite, they are cutoff dependent. To eliminate this 
dependence, a renormalization scheme is required. In this connection it seems 
interesting to investigate the second quantization of  ",/-fluids and search for 
a renormalization scheme in this theory. This issue is presently under 
investigation. 
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